Discovering Sociolinguistic Associations with Structured Sparsity

نویسندگان

  • Jacob Eisenstein
  • Noah A. Smith
  • Eric P. Xing
چکیده

We present a method to discover robust and interpretable sociolinguistic associations from raw geotagged text data. Using aggregate demographic statistics about the authors’ geographic communities, we solve a multi-output regression problem between demographics and lexical frequencies. By imposing a composite `1,∞ regularizer, we obtain structured sparsity, driving entire rows of coefficients to zero. We perform two regression studies. First, we use term frequencies to predict demographic attributes; our method identifies a compact set of words that are strongly associated with author demographics. Next, we conjoin demographic attributes into features, which we use to predict term frequencies. The composite regularizer identifies a small number of features, which correspond to communities of authors united by shared demographic and linguistic properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Topical Coding

We present sparse topical coding (STC), a non-probabilistic formulation of topic models for discovering latent representations of large collections of data. Unlike probabilistic topic models, STC relaxes the normalization constraint of admixture proportions and the constraint of defining a normalized likelihood function. Such relaxations make STC amenable to: 1) directly control the sparsity of...

متن کامل

Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping

We consider the problem of learning a sparse multi-task regression with an application to a genetic association mapping problem for discovering genetic markers that influence expression levels of multiple genes jointly. In particular, we consider the case where the structure over the outputs can be represented as a tree with leaf nodes as outputs and internal nodes as clusters of the outputs at...

متن کامل

Fast Algorithms for Structured Sparsity

Sparsity has become an important tool in many mathematical sciences such as statistics, machine learning, and signal processing. While sparsity is a good model for data in many applications, data often has additional structure that goes beyond the notion of “standard” sparsity. In many cases, we can represent this additional information in a structured sparsity model. Recent research has shown ...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

Bayesian Structured Sparsity from Gaussian Fields

Substantial research on structured sparsity has contributed to analysis of many different applications. However, there have been few Bayesian procedures among this work. Here, we develop a Bayesian model for structured sparsity that uses a Gaussian process (GP) to share parameters of the sparsity-inducing prior in proportion to feature similarity as defined by an arbitrary positive definite ker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011